Minimum Cost Edge-Colorings of Trees Can Be Reduced to Matchings
نویسندگان
چکیده
Let C be a set of colors, and let ω(c) be an integer cost assigned to a color c in C. An edge-coloring of a graph G is to color all the edges of G so that any two adjacent edges are colored with different colors in C. The cost ω( f ) of an edge-coloring f of G is the sum of costs ω( f (e)) of colors f (e) assigned to all edges e in G. An edge-coloring f of G is optimal if ω( f ) is minimum among all edge-colorings of G. In this paper, we show that the problem of finding an optimal edge-coloring of a tree T can be simply reduced in polynomial time to the minimum weight perfect matching problem for a new bipartite graph constructed from T . The reduction immediately yields an efficient simple algorithm to find an optimal edge-coloring of T in time O(n1.5Δ log(nNω)), where n is the number of vertices in T , Δ is the maximum degree of T , and Nω is the maximum absolute cost |ω(c)| of colors c in C. We then show that our result can be extended for multitrees. key words: algorithm, cost edge-coloring, multitree, perfect matching, tree
منابع مشابه
Path Costs in Evolutionary Tree Reconstruction
This paper describes a dynamic programming algorithm to solve a family of problems in the reconstruction of evolutionary trees from protein sequence data, that of constructing "minimal" colorings. This dynamic programming formulation can be modified to efficiently enumerate the number of minimal colorings and thereby be used to calculate the average cost of any given edge, where the average is ...
متن کاملGlobal Forcing Number for Maximal Matchings under Graph Operations
Let $S= \{e_1,\,e_2, \ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$. The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$, where $d_i=1$ if $e_i\in M$ and $d_i=0$ otherwise, for each $i\in\{1,\ldots , k\}$. We say $S$ is a global forcing set for maximal matchings of $G$ if $...
متن کاملUniquely Restricted Matchings and Edge Colorings
A matching in a graph is uniquely restricted if no other matching covers exactly the same set of vertices. This notion was defined by Golumbic, Hirst, and Lewenstein and studied in a number of articles. Our contribution is twofold. We provide approximation algorithms for computing a uniquely restricted matching of maximum size in some bipartite graphs. In particular, we achieve a ratio of 9/5 f...
متن کاملPerfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملConflict-Free Colorings - Of Graphs and Hypergraphs - Diploma-Thesis of
Conflict-free colorings are known as vertex-colorings of hypergraphs. In such a coloring each hyperedge contains a vertex whose color is not assigned to any other vertex within this edge. In this thesis the notion of conflict-free colorings is translated to edge-colorings of graphs. For graphs G and H a conflict-free coloring of G ensures an edge of unique color in each copy of H in G. The mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 94-D شماره
صفحات -
تاریخ انتشار 2010